Alkaloids from the Bulbs of Lycoris aurea

by Yu Yang^a)^b), Sheng-Xiong Huang^a), Yi-Min Zhao^b), Qin-Shi Zhao^{*a}), and Han-Dong Sun^a)

^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P. R. China

(phone: +86-871-5223254; fax: +86-871-5216317; e-mail: qinshizhaosp@yahoo.com)

^b) Laboratory of Phytochemistry, Institute of Pharmacology & Toxicology, Academy of Military Medical Sciences, Beijing 100850, P. R. China

Two new and ten known alkaloids have been isolated from the bulbs of *Lycoris aurea* (Amaryllidaceae). The two new compounds, lycosinine A (=[2-(2,3-dihydro-1-methyl-1*H*-indol-7-yl)-4,5-dimethoxyphenyl]-methanol; **1**) and lycosinine B (=2-(2,3-dihydro-1-methyl-1*H*-indol-7-yl)-4,5-dimethoxybenzaldehyde; **2**), were fully characterized by spectroscopic methods. In addition, a plausible biogenesis of homolycorine from **1** and **2** is proposed (*Scheme*).

1. Introduction. – Plants of the Amaryllidaceae are known to produce structurally unique alkaloids, covering a wide range of interesting physiological effects such as antitumor, antiviral, acetylcholinesterase-inhibitory, immunostimulatory, and antimalarial activities [1]. *Lycoris aurea* (Amaryllidaceae), a popular ornamental plant in China, is widely distributed in the tropics and warm-temperature regions.

In continuation of our search for new bioactive alkaloids, we investigated the chemical constituents of the bulbs of *L. aurea* (collected in Kunming, Yunnan province), since this plant has not been studied previously. Extensive column chromatography of the EtOH extract of *L. aurea* bulbs led to the isolation of two novel alkaloids, lycosinine A (1) and lycosinine B (2), together with ten known alkaloids: galanthamine [2][3], hippeastrine [3], haemanthidine [4], *N*-demethyl-galanthamine [5], *O*-demethylgalanthamine [3], haemanthamine [6], homolycorine [4], *O*-demethyllycoramine [7], lycorine [8] and *O*-methyllycorenine [9]. The structures of these compounds were unambiguously established on the basis of spectroscopic methods. In addition, the biogenetic relationships of 1, 2, and homolycorine are discussed.

2. Results and Discussion. – Compound **1**, a colorless powder, had the molecular formula $C_{18}H_{21}NO_3$, as deduced by HR-ESI-MS (m/z 322.1420 ($[M + Na]^+$)) and

^{© 2005} Verlag Helvetica Chimica Acta AG, Zürich

NMR. Its IR spectrum displayed absorptions at 3426*s* (br.), 1632, 1513, and 1465 cm⁻¹, associated to an oxygenated benzene ring. The ¹H-NMR spectrum of **1** (*Table*) revealed five aromatic H-atoms, two of which were *para*-oriented, appearing at δ (H) 6.99 (*s*, H–C(3')) and 6.83 (*s*, H–C(6')) on ring *A*¹). The remaining three aromatic resonances appeared as an *AMX* system, typical of a 1,2,3-trisubstituented benzene ring (ring *B*) at δ (H) 7.14 (*d*, *J* = 7.2 Hz, 1 H), 6.93 (*d*, *J* = 7.2 Hz, 1 H), and 6.90 (*t*, *J* = 7.2 Hz, 1 H), as further confirmed by a ¹H,¹H-COSY spectrum.

Table. ¹*H*- and ¹³*C*-*NMR Data of* **1** and **2**. At 500/125 MHz, resp, in CDCl₃; δ in ppm, J in Hz. Arbitrary atom numbering. Assignments were confirmed by ¹H, ¹H-COSY, HMQC, and HMBC experiments.

Position	1		2	
	¹ H	¹³ C	¹ H	¹³ C
1	-	151.0 (s)	-	151.8 (s)
2	-	126.1(s)	-	121.2(s)
3	6.93 (d, J = 7.2)	129.7(d)	6.86 (d, J = 7.5)	130.7(d)
4	6.90(t, J = 7.2)	120.8(d)	6.72 $(t, J = 7.4)$	118.3(d)
5	7.14 (d, J = 7.2)	123.8(d)	7.09 (d, J = 7.4)	124.3 (d)
6	_	132.1(s)	_	131.6 (s)
7	3.09 (dd, J = 9.9, 5.5) 2.96 - 3.02 (m)	29.6 (<i>t</i>)	2.94–2.98 (<i>m</i>)	28.6 (<i>t</i>)
8	3.60 (dd, J = 14.3, 9.9) 2.92 - 2.99 (m)	56.6 (<i>t</i>)	3.32 (dd, J = 16.0, 8.3) 3.21 (dd, I = 17.1, 8.8)	57.0 (<i>t</i>)
1′	_	148.5(s)	_	153.4(s)
2′	_	148.6(s)	_	148.7(s)
3'	6.99(s)	112.9(d)	7.44(s)	107.9(d)
4′	_	132.0(s)	_	139.8 (s)
5'	_	131.8(s)	_	127.6(s)
6′	6.83(s)	112.7(d)	6.83(s)	113.0 (d)
7′	4.20 (s)	64.5(t)	9.58 (s)	193.0 (d)
1'-MeO	3.93 (s)	56.9(q)	3.94 (s)	56.3 (q)
2'-MeO	3.87(s)	56.8(q)	3.91 (s)	56.1 (q)
MeN	2.19 (s)	40.9(q)	2.21 (s)	39.2 (q)

The ¹H-NMR spectrum of **1** displayed signals at δ (H) 3.93 (*s*, 3 H), 3.87 (*s*, 3 H), and 2.19 (*s*, 3 H), characteristic of two MeO and one MeN group, respectively. Further, a CH₂OH group was identified from the signals at δ (H) 4.20 (*s*, 2 H) and δ (C) 64.5 (*t*) in the ¹H- and ¹³C-NMR spectra, respectively. From the ¹H,¹H-COSY spectrum of **1**, a CH₂CH₂ fragment was evident, which was attached to ring *B* at C(6) (δ (C) 132.1 (*s*)) because of HMBC correlations of both CH₂(7) and CH₂(8) with C(6), between H–C(4) and C(6), and between H–C(5) and C(7) (*Figure*).

The N-atom of the MeN group was connected to both C(1) at δ (C) 151.0 (*s*) and C(8), at 56.6 (*t*), which was supported by HMBC correlations between C(1), C(8), and MeN. Ring *A* was joined to ring *B* through C(5') at δ (C) 131.8 (*s*) and C(2) at 126.1 (*s*), in accord with HMBC correlations between H–C(3) and C(5'), and between H–C(6') and C(2). The CH₂OH group was attached to ring *A* at C(4') (δ (C) 132.0 (*s*)), as confirmed by HMBC correlations between CH₂(7') and C(3'), C(4'), and C(5'), respectively. The two MeO groups were placed in 1'- and 2'-position of ring *A*, as

¹⁾ Arbitrary atom numbering. For systematic names, see Exper. Part.

deduced from HMBC correlations between 1-MeO and C(1'), and between 2'-MeO and C(2'). From these data, the structure of lycosinine A (1) was determined as [2-(2,3-dihydro-1-methyl-1*H*-indol-7-yl)-4,5-dimethoxyphenyl]methanol.

Fig. 1. Key HMBC correlations for compounds 1 and 2

Compound **2** was isolated as a colorless powder. It had the molecular formula $C_{18}H_{19}NO_3$ according to HR-ESI-MS (m/z 298.1438 ($[M + H]^+$)) and NMR (*Table*). Its IR spectrum displayed strong absorptions at 1677, 1596, 1510, and 1446 cm⁻¹, indicating a C=O group and a benzene ring. The spectroscopic data of **1** and **2** were similar, but **2** was lacking the CH₂OH group, which was replaced with a CHO function (δ (C) 193.0 (d); δ (H) 9.58 (s, 1 H)). HMBC Correlations (*Figure*) further confirmed that lycosinine B (**2**) was an oxidized congener of lycosinine A, and corresponds to 2-(2,3-dihydro-1-methyl-1*H*-indol-7-yl)-4,5-dimethoxybenzaldehyde.

Based on the structures of compounds 1 and 2, and considering the isolation of homolycorine from *L. aurea*, we propose that homolycorine is biosynthesized from 1 and 2, as shown in the *Scheme*.

Scheme 1. Proposed Biogenesis of Homolycorine from the New Constituents Lycosinin A (1) and Lycosinin B

Experimental Part

General. Petroleum ether (PE) for chromatography had a b.p. range of $60-90^{\circ}$. Column chromatography (CC) was performed on silica gel (100–200 mesh; *Qingdao Marine Chemical, Inc.*, China) and silica gel H (10–40 µm, *Qingdao*). Fractions were monitored by TLC, and spots were visualized by spraying with *Dragendorff* reagent. UV Spectra: *Shimadzu 210A* double-beam spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Bio-Rad FTS-135* spectrophotometer, KBr discs; in cm⁻¹. 1D- and 2D-NMR Spectra: *Bruker AM-400* and *DRX-500* instruments; chemical shifts δ in ppm rel. to residual solvent signals, *J* in Hz. EI-MS and HR-ESI-MS: *VG AutoSpec-3000* and *Finnigan MAT-90* spectrometers, resp.; in m/z (rel. %).

Plant Material. Fresh bulbs of *L. aurea* were collected in Kunming, Yunnan Province, China, in March 2004, and were identified by Prof. *Xiao Chen*, Kunming Institute of Botany, Chinese Academy of Sciences, where a voucher specimen (KIB L00401) was deposited.

Extraction and Isolation. The Air-dried bulbs of *L. aurea* (4.8 kg) were extracted with 95% EtOH at r.t. for 5×24 h. The extract was concentrated in *vavuo*. The resulting residue was dissolved in H₂O, basified pH Ph 8–9 with 10% aq. NH₃ soln., and extracted with CHCl₃ (3 ×) and then CHCl₃/MeOH 3 :2. The extracts were combined and evaporated. The crude residue was purified by CC (SiO₂ (300 g), 200–300 mesh; PE/AcOEt/ Et₂NH 90:5:5 \rightarrow 20:75:5): three fractions (Fr.). *Fr. 1* was subjected to CC (SiO₂; PE/CHCl₃/Et₂NH 50:45:5), which afforded galanthamine (560 mg) after recrystallization from CHCl₃/MeOH 4:1. Further CC (SiO₂; cyclohexane/acetone/Et₂NH 90:8:2) of *Fr. 1* afforded 1 (4 mg), **2** (3 mg), and hippeastrine (3 mg). *Fr. II* was purified by VCC (SiO₂; PE/acetone/Et₂NH 60:35:5), which afforded a mixture of haemathhidine (21 mg) and *N*-demethylgalanthamine (30 mg), which were further separated by CC (*RP-18*; MeOH/H₂O 7:3). *Fr. 3* was purified by CC (SiO₂; cyclohexane/i-PrOH/Et₂NH 80:15:5 \rightarrow 30:65:5): *Fr. 3a* - *c. Fr. 3a* was subjected to CC (*RP-18*; MeOH/H₂O 7:3), and then recrystallized from MeOH to afford *O*-demethylgalanthamine (23 mg) and haemanthamine (15 mg). *Fr. 3b* was purified as *Fr. 3a* to afford homolycorine (498 mg) and *O*-demethyllycoriamine (60 mg). *Fr. 3b* was purified by CC (SiO₂; PE/i-PrOH/Et₂NH 50:45:5) to afford lycorine (9 mg) and *O*-methyllycorenine (24 mg).

Lycosinine A (= [2-(2,3-Dihydro-1-methyl-1H-indol-7-yl)-4,5-dimethoxyphenyl]methanol; **1**). Yield: 4 mg. Colorless powder. UV (CHCl₃): 283 (3.28), 240 (3.57). IR (KBr): 3426, 2923, 2481, 1632, 1513, 1464, 1062, 805. ¹H- and ¹³C-NMR: see the *Table*. EI-MS: 299 (29, M^+), 238 (11), 137 (20), 58 (100), 57 (75). HR-ESI-MS: 322.1420 ([M + Na]⁺, C₁₈H₂₁NNaO⁺₃; calc. 322.1419).

Lycosinine B (=2-(2,3-*Dihydro-1-methyl-1*H-*indol-7-yl*)-4,5-*dimethoxybenzaldehyde*; **2**). Yield: 3 mg. Colorless powder. UV (CHCl₃): 312 (3.97), 280 (4.13), 242 (4.39). IR (KBr): 2923, 2850, 1677, 1596, 1510, 1446, 1349, 1282, 1260, 1139, 746. ¹H- and ¹³C-NMR: see the *Table*. EI-MS: 297 (29, M^+), 296 (54), 268 (21), 236 (13), 57 (100). HR-ESI-MS: 298.1438 ([M + H]⁺, C₁₈H₂₀NO⁺; calc. 298.1443).

REFERENCES

[1] Z. Jin, Nat. Prod. Rep. 2003, 20, 606.

- [2] S. H. Hong, G. E. Ma, Acta Pharm. Sin. 1964, 11, 1.
- [3] S. Kobayashi, M. Kihara, K. Yuasa, Y. Imakura, T. Shingu, A. Kato, T. Hashimoto, Chem. Pharm. Bull. 1985, 33, 5258.
- [4] M. Kihara, K. Konishi, L. Xu, S. Kobayashi, Chem. Pharm. Bull. 1991, 39, 1849.
- [5] S. Kobayashi, H. Ishikawa, M. Kihara, T. Shingu, S. Ugeo, Chem. Pharm. Bull. 1976, 24, 2553.
- [6] M. Kihara, K. Konishi, L. Xu, S. Kobayashi, Chem. Pharm. Bull. 1991, 39, 1849.
- [7] S. Kobayashi, K. Yuasa, Y. Imakura, M. Kihara, T. Shingu, Chem. Pharm. Bull. 1980, 28, 3433.
- [8] K. Likhitwitayawuid, C. K. Angerhofer, H. Chal, J. M. Pezzuto, G. A. Cordell, J. Nat. Prod. 1993, 8, 1331.
- [9] C. Codina, J. Bastida, F. Viladomat, J. M. Fernandez, S. Bergonon, M. Rubiralta, J. C. Quirion, *Phytochemistry* 1993, 32, 1354.

Received April 22, 2005